` 학술지 열람 - 학술지(BCJ) : (사)한국바이오칩학회 (The Korean BioChip Society)
Go to contents

(사)한국바이오칩학회 The Korean BioChip Society





BT+IT+NT융합시대의 리더 : 한국바이오칩학회

학술지 열람

논문 정보 자세히 보기

Info. Vol.12 - No.3 (2018.09.20)
Title Co-Culturing Cancer Cells and Normal Cells in a Biochip under Electrical Stimulation
Authors Kin Fong Lei1,2,3,*, Shao-Chieh Hsieh1, Rei-Lin Kuo4,5,6,7 & Ngan-Ming Tsang3,8,*
Institutions 1Graduate Institute of Medical Mechatronics, Chang Gung University, Taoyuan, Taiwan
2Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
3Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan
4Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
5Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
6Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
7Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
8Department of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
*Correspondence and requests for materials should be addressed to K.F. Lei (kflei@mail.cgu.edu.tw) and N.M. Tsang (vstsang@cgmh.org.tw)
Abstract The ideal cancer therapeutic strategy is to inhibit the tumor with minimal influence on the normal tissue. Recently, applying an alternating electric field for inhibiting tumor was developed; but, it has not been adopted to be one of the regular therapeutic options. More basic scientific evidence is needed to clarify the efficacy and safety. In the current study, co-culturing cancer cells and normal cells under the electrical stimulation was conducted to provide evidence of this novel cancer therapy. A microfluidic cell culture biochip has been developed and consisted of nine culture chambers incorporating with stimulating electrodes. Cells cultured in the chamber received uniform electric field and cell viability was studied during the culture course. The electric field perturbs cell division and the correlation between cell proliferation rate and inhibition effect was studied among five cell lines, i.e., Huh7, HeLa, TW06, BM1, and HEL299. The results confirmed that cells with higher proliferation rate responded to a higher inhibition. In addition, co-culturing cancer cells and normal cells was conducted to mimic in vivo microenvironment that consists of both cancer and stromal cells. The cancer cells and normal cells were respectively transduced with green fluorescent protein and red fluorescent protein in order to differentiate the cells in a same culture chamber. During the culture course, the electric field was applied to the culture chamber and both cells simultaneously received the field. The results indicated that the growth of the cancer cells were inhibited while the normal cells were maintained. These results provided the evidence of the therapeutic efficacy and safety. Moreover, the microfluidic cell culture biochip could be used for the systematic and precise investigations of the cellular responses under the electrical stimulation.
Keyword Biochip, Cell culture, Co-culture, Electrical stimulation
PDF File
# 2010년도 발행분 부터는 Springer 의 BioChip Journal 페이지에서 전문을 열람하실 수 있습니다.
# 학회회원 로그인 후 [ Springer BioChip Journal 열람하기 ] 버튼을 클릭하시면 새창으로 열립니다.
→ 전체 목록 보기

(사)한국바이오칩학회 (The Korean BioChip Society)
총괄/후원/부스/저널/학술대회
전화 : 070-7767-9855
전자우편 : biochip@biochip.or.kr
등록/초록/학술대회/e-컨퍼런스/
회원정보/홈페이지
전화 : 070-7767-9867
전자우편 : biochip2@biochip.or.kr
주소 : (우)06130, 서울특별시 강남구 테헤란로7길 22 과학기술회관 1관 804호    대표자 : 박현규   고유번호 : 206-82-65403   팩스 : 02-921-9856
웹사이트 : https://www.biochips.or.kr Copyright © The Korean BioChip Society. All Rights Reserved.