` 학술지 열람 - 학술지(BCJ) : (사)한국바이오칩학회 (The Korean BioChip Society)
Go to contents

(사)한국바이오칩학회 The Korean BioChip Society





BT+IT+NT융합시대의 리더 : 한국바이오칩학회

학술지 열람

논문 정보 자세히 보기

Info. Vol.6 - No.2 (2012.06.20)
Title Identification of potential molecular biomarkers in response to thioredoxin reductase 1 deficiency under nickel exposure
Authors Hye Lim Kim1,2,3 & Young Rok Seo1,2,3
Institutions 1Department of Life Science,
2Institute of Environmental Medicine for Green Chemistry, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 100-715, Korea
3Department of Pharmacology, Institute for Biomedical Science Institute (IBMS), School of Medicine, Kyung Hee University, Seoul 130-701, Korea
Correspondence and requests for materials should be addressed to Y.R. Seo (seoyr@dongguk.edu)
Abstract Nickel (II) is a ubiquitous environmental contaminant and it is known to be a highly toxic metal. The level of nickel in the environment has been raised with advances in industrialization and the role of nickel in human diseases is of increasing concern. Thioredoxin reductase 1 (Trr 1) is one of major redox factors having a potential role in cellular defense system against exposure to environmental toxicants. In this study, we investigated the protective roles of the Trr 1 against nickel-induced DNA damage. We found significantly higher amounts of DNA strand break in Trr 1 silencing cells compared to Trr 1 wild-type cells under nickel exposure, using 款-H2AX immunofluorescence staining. We also identified the potential molecular biomarkers that participated in gene-environment interaction between Trr 1 deficiency and nickel exposure via microarray analysis. In particular, seven upregulated genes (AHNAK, FZR1, LGALS7, PLD1, PPM1F, RHOB and SFRP1) and three down-regulated genes (IFITM1, MAPK8 and RCN1), whose functions are principally in toxicity-prone as well as cytoprotection processes, including cell proliferation, cell survival, apoptosis, inflammation and DNA repair. Our findings demonstrate gene-environment interaction between Trr 1 deficiency and nickel-induced toxicity, as evidence that insufficient of redox factor Trr 1 accelerated DNA lesions caused by nickel exposure. These results suggest that the candidate genes might be further useful in the establishment of Trr 1-mediated strategies by which modulate cellular defense against environmental toxicants, nickel.
Keyword Nickel, Thioredoxin reductase 1, DNA damage, Toxicogenomics, Pathway analysis
PDF File
# 2010년도 발행분 부터는 Springer 의 BioChip Journal 페이지에서 전문을 열람하실 수 있습니다.
# 학회회원 로그인 후 [ Springer BioChip Journal 열람하기 ] 버튼을 클릭하시면 새창으로 열립니다.
→ 전체 목록 보기

(사)한국바이오칩학회 (The Korean BioChip Society)
총괄/후원/부스/저널/학술대회
전화 : 070-7767-9855
전자우편 : biochip@biochip.or.kr
등록/초록/학술대회/e-컨퍼런스/
회원정보/홈페이지
전화 : 070-7767-9867
전자우편 : biochip2@biochip.or.kr
주소 : (우)06130, 서울특별시 강남구 테헤란로7길 22 과학기술회관 1관 804호    대표자 : 박현규   고유번호 : 206-82-65403   팩스 : 02-921-9856
웹사이트 : https://www.biochips.or.kr Copyright © The Korean BioChip Society. All Rights Reserved.