` 학술지 열람 - 학술지(BCJ) : (사)한국바이오칩학회 (The Korean BioChip Society)
Go to contents

(사)한국바이오칩학회 The Korean BioChip Society





BT+IT+NT융합시대의 리더 : 한국바이오칩학회

학술지 열람

논문 정보 자세히 보기

Info. Vol.7 - No.3 (2013.09.20)
Title Valproic acid inhibits cell size and cell proliferation by AMPK-mediated mTOR signaling pathway in JEG-3 cells
Authors Youn-Jung Kim1, Jina Lee2, Mi-Kyung Song2, Taejun Han3 & Jae-Chun Ryu2
Institutions 1Department of Food and Nutrition, Eulji University, 212 Yangji- Dong, Sujueong-Gu, Seongnam-Si, Gyeonggi-Do 461-713, Korea
2Cellular and Molecular Toxicology Laboratory, Center for Integrated Risk Research, Korea Institute of Science & Technology P.O. Box 131, Cheongryang, Seoul 130-650, Korea 3Department of Marine Sciences, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea
Abstract Valproic acid is commonly used to treat seizure disorders, bipolar disorder, migraine prophylaxis, and neuropathic pain. Despite its effectiveness and widespread use, valproic acid has been proven to exert considerable teratogenic potential, such as neural tube defects and malformations of the heart in both the humans and animals. However, the molecular mechanism of the teratogenic effects of valproic acid has not been fully elucidated. Because adverse effects in fetus by teratogens are obviously detectable only after birth and there are the limits of teratogenicity testing using rodents, such as thalidomide tragedy, new strategies for pre-determining teratogenic effects are required. Here, we try to elucidate the indirect teratogenicity of valproic acid in a human placenta-derived cell line (JEG-3) using a transcriptomic approach. In this study, using human whole genome oligonucleotide microarray, we identified 2,076 up- and 1,730 down-regulated genes which were changed more than 1.5-fold in JEG-3 cells exposed to valproic acid. Many of these genes have associations with lysosome, transport, tight junction, splicesome, cell cycle and mammalian target of rapamycin (mTOR)-signaling pathway. Among these, we focused on the adenosine monophosphate (AMP)- dependent kinase or AMP-activated kinase (AMPK)- mediated mTOR signaling pathway, and hypothesized that the negative control of mTOR signaling by AMPK might induce inhibition of the growth of JEG-3 cell exposed to valproic acid. First, flow cytometry analysis showed that valproic acid induced the inhibition of cell growth caused by G1 phase arrest. Second, the expression of genes related to mTOR signaling was changed. Using quantitative real-time RT-PCR data, it was confirmed that PTEN, PIK3CB, PIK3CD, PIK3R3, IRS2, and PRKAA2 (AMPK慣2) were overexpressed, and that G棺L and AKT1 were under-expressed in valproic acid treated JEG-3 cells compared to a control. We also confirmed the protein expression and the activation of AMPK and raptor after valproic acid exposure. Thus, this study suggests that valproic acid affects AMPK, and then AMPK may influence cell growth through mTOR signaling, and particularly, mTOR activity is suppressed by raptor activation. From this point of view, these genes may provide potential biomarkers that may contribute to decrease the number of candidate drugs showing teratogenicity in large-scale tests using placenta cells.
Keyword Valproic acid, placenta cell line (JEG-3),AMPK, mTOR signaling, teratogenicity, transcriptomics
PDF File
# 2010년도 발행분 부터는 Springer 의 BioChip Journal 페이지에서 전문을 열람하실 수 있습니다.
# 학회회원 로그인 후 [ Springer BioChip Journal 열람하기 ] 버튼을 클릭하시면 새창으로 열립니다.
→ 전체 목록 보기

(사)한국바이오칩학회 (The Korean BioChip Society)
총괄/후원/부스/저널/학술대회
전화 : 070-7767-9855
전자우편 : biochip@biochip.or.kr
등록/초록/학술대회/e-컨퍼런스/
회원정보/홈페이지
전화 : 070-7767-9867
전자우편 : biochip2@biochip.or.kr
주소 : (우)06130, 서울특별시 강남구 테헤란로7길 22 과학기술회관 1관 804호    대표자 : 박현규   고유번호 : 206-82-65403   팩스 : 02-921-9856
웹사이트 : https://www.biochips.or.kr Copyright © The Korean BioChip Society. All Rights Reserved.