Go to contents

(사)한국바이오칩학회 The Korean BioChip Society





BT+IT+NT융합시대의 리더 : 한국바이오칩학회

학술지 열람

논문 정보 자세히 보기

Info. Vol.14 - No.2 (2020.06.20)
Title Simple Paper-based Liver Cell Model for Drug Screening
Authors Kattika Kaarj1 , Jennifer Ngo2 , Christina Loera3 , Patarajarin Akarapipad2 , Soohee Cho1,† & Jeong-Yeol Yoon1,2,*
Institutions 1 Department of Biosystems Engineering, The University of Arizona, Tucson, Arizona 85721, USA
2 Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
3 Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, Arizona 85721, USA
Current address: Abbott Laboratories, Santa Clara, California, 95054, USA.
*Correspondence and requests for materials should be addressed to J.-Y. Yoon (jyyoon@arizona.edu)
Abstract Investigation of the potential adverse effects of chemicals and drugs is essential during the drug development process. In vitro cell model systems have been developed over the past years towards such toxicity investigation. 96-well plate is the common platform for screening drug toxicity due to its simplicity. However, this platform only offers 2D cell culture environment and lacks the flow of solutions, which fails to provide the suitable environment for the cells to adequately metabolize the drugs, for the media to replenish, and for the metabolites and wastes to be removed. Microfluidic chips populated with human or animal cells, known as organ-on-achip (OOC), can reconcile many issues of in vitro cell models, such as the lack of extracellular matrix and flow as well as the species difference. However, OOC can be complicated to fabricate and operate. To bridge this gap, we utilized paper as a primary substrate for OOC, considering its fibrous structure that can mimic natural extracellular matrix, as well as a syringe pump and filter that are commonly available in most laboratories. Paper microfluidic model was designed and fabricated by wax printing on nitrocellulose paper, seeded and proliferated with liver cells (primary rat hepatocytes and HepG2 cells), and two paper substrates were stacked together to complete the paper model. To this paper-based liver cell model, the following drugs were added: Phenacetin (pain reliever and fever reducer), Bupropion (antidepressant), Dextromethorphan (antidepressant), and phosphate-buffered saline (PBS) as a control, all under a physiologically relevant flow rate. The combination of these drugs with Fluconazole (antifungal drug) was also investigated. Cell count, cell morphology, protein production, and urea secretion after drug treatment confirmed that the model successfully predicted toxicity within 40 minutes. This simple, paper-based liver cell model provided enhanced and faster cell response to drug toxicity and showed comparable or better behavior than the cells cultured in conventional 2D in vitro models.
Keyword Drug toxicity, Paper microfluidics, Organ-on-a-chip, Rat hepatocyte, HepG2
PDF File
# 2010년도 발행분 부터는 Springer 의 BioChip Journal 페이지에서 전문을 열람하실 수 있습니다.
# 학회회원 로그인 후 [ Springer BioChip Journal 열람하기 ] 버튼을 클릭하시면 새창으로 열립니다.
→ 전체 목록 보기

(사)한국바이오칩학회 (The Korean BioChip Society)
주소 : (우)06130, 서울특별시 강남구 테헤란로7길 22 과학기술회관 신관 804호     대표자 : 심상준, 고유번호 : 206-82-65403
대표전화 : 070-7767-9855 , 팩스 : 02-921-9856 , 전자우편 : biochip@biochip.or.kr, 웹사이트 : http://www.biochips.or.kr Copyright © The Korean BioChip Society. All Rights Reserved.
Facebook Twitter URL 복사