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Abstract

In this paper, we present a working formula for cal-
culating the electric field inside a microchannel that
has two reservoirs, one attached at either end of the
channel, supplying the electric charge. For the case
where the channel width is much smaller than the
reservoir size, as is usually the case, we designed a
method to patch the numerical solutions obtained
for the reservoir domain and the asymptotic solu-
tions valid for the region near the entrance to the
channel where it attaches to the reservoir. Assuming
small channel size, we also derived two asymptotic
solutions, for the potential and for the electric field
applicable to the reservoir and to the channel re-
gions. A working formula was then established that
could predict the effects of the electrode and chan-
nel size relative to the reservoir on the electric field
built inside the channel. The working formula was
robust and applicable to a wide range of parameter
values.

Keywords: Microchannel, Entrance effect, Electric field,
Asymptotic solutions

Introduction

Recently, there has been a great deal of interest in
microfluidics. In particular, microchannels have fre-
quently been utilized to convey a liquid from one
place to another. As for the fluid-driving force, electro
-osmotic force has been used predominantly among
other tools such as pressure force1. To generate an
electro-osmotic force, the channel is connected to two
reservoirs, one at either end, in which electrodes are
submerged. As soon as a certain electric-potential
difference is applied between the two electrodes, an

almost constant electric field is generated within the
channel. The ionic molecules (positively charged)
within the EDL (Electric Double Layer) very near the
channel wall are then driven toward the cathode by
this electric field1. 

The driving velocity is proportional to the local
electric field at the channel wall2. In most cases, this
electric field is obtained by dividing the applied poten-
tial difference by the channel length, irrespective of
the reservoir design. However, because the two elec-
trodes are usually situated at the center of the corres-
ponding reservoir, the electric potential at the end of
the channel is not the same as that of the electrode
itself. So, we may expect that the electric field calcu-
lated conventionally may over-predict the actual true
electric field. To our knowledge, there have been no
studies on the effect of the channel entrance on the
electric potential and the electric field. 

In this paper, we propose a working formula to
predict the effect of electrode size and channel width
relative to reservoir size on the electric field built up
within the channel. To solve the Laplace equation for
the electric potential, we used the finite difference
method after conformal mapping of the coordinates.
The boundary condition at the interface of the channel
was supplied from the asymptotic solution obtained
near the channel entrance. On the other hand, two
analytic solutions were also derived that are asymp-
totically correct for small electrode and channel sizes,
one for the reservoir and the other for the channel
region. These solutions, together with the numerical
results, were then used to derive a working formula to
predict the electric field built up inside the channel.

In the next two sections of this paper, we will de-
rive the asymptotic solutions for the potential, one for
the reservoir and the other for the channel entrance
region, assuming small electrode and channel size;
the next section will describe the numerical method
for solving the Laplace equation for the potential
within the reservoir; then, after the numerical results
are presented, the working formula will be derived to
predict the electric field inside the channel. 

Asymptotic Solutions for the Potential 
in the Reservoir

The fundamental problem we considered in this
paper was to find an electric potential within a geo-
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metry composed of two circular reservoirs of radius
R, each with an electrode of diameter d at its center,
and the connecting channel of width w (Figure 1).
Without loss of generality, we can take R==1. The
center of the electrode’s anode is considered the
origin of the Cartesian coordinates (x, y), as shown in
Figure 1. As the problem has symmetric properties,
we confined ourselves to the upper half-plane, y›0.
The governing equation for the electric field is the
Laplace equation1,

∇2φ==0 (1)

All the surrounding boundaries, except the electrode
surface, are insulated.

Assuming that both the electrode diameter and the
channel width are very small compared to the reser-
voir size, we can obtain the asymptotic solution of
the Laplace equation (1) for the potential that is rele-
vant to the region within the reservoir. For this, we
first introduce a conformal mapping: 

z==exp(ρ) (2)

where z==x++iy is the complex Cartesian coordinate
and ρ==ξ++iη is the transformed coordinate (Figure
2b). The cylindrical coordinates are r==exp(ξ) and
θ==η. Then, using the Schwarz-Christoffel transfor-
mation method3,4, we can transform the ρ-plane to the
σ-plane on which the boundary is now flat, as shown
in Figure 2(c). The relationship between the two
planes is

σ==-coshρ (3)

in which ρ==0, σ==-1 at point B, and ρ==πi, σ==1 at
point D. Since point B is considered a sink for the
electric field, the complex potential W=φ++iψ is given
by

m
W==mmm ln(1++σ) (4)

2π

where m is the total flux of the electric field:

m==
A

E·dA

Here, E is the electric field vector, and the cross-sec-

tional area A covers not only the upper half-plane,
y›0, but also the lower half-plane, y⁄0 on the elec-
trode surface; within the channel, it covers the whole
channel width. The quantity m can also be considered
the total electric charge divided by the electric per-
mittivity of the medium inside the domain. By substi-
tuting (3) and (2) into this equation, we can write the
complex potential in terms of the physical coordi-
nates as follows:

m
W==mmm ln[1-(z++1/z)/2] (5)

2π

The electric potential is given by φ==Real(W), and its
conjugate pair by ψ==Im(W). 

Figure 3 shows the equi-potential lines and the
electric field lines obtained with (5). It can be shown
that ψ==0 on the outer wall of the reservoir and that
z==exp(iη). 

Asymptotic Solutions for the Potential near
the Channel Entrance

Assuming that the channel size is very small com-
pared to the reservoir size, we can approximate the
region very close to the channel entrance as the one
shown in Figure 4(a). To obtain the solution for the
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Figure 1. Microchannel connecting two circular reservoirs
that contain electrodes.
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(c)

Figure 2. Sketches of the physical plane (a), the transformed
ρ-plane (b) and the transformed σ-plane (c) used to derive the
asymptotic solution of the Laplace equation for potential in
the circular reservoirs.
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Laplace equation with this geometry, we use the Sch-
warz-Christoffel transformation method3,4:

dz1              1-ζ
mmm==Ki mmmmmm (6)
dζ             ζ

where z1==(x-1)++iy is the physical plane shifted
from z, and ζ is the transformed plane (Figure 4(b)).
The constant K is evaluated from a matching condi-
tion for a specific point in both planes, i.e., z1 and ζ.
Integrating and applying the conditions for point C,
i.e.,

w
z1==mm i  at  ζ==1

2

we obtain the following relationship:

(7)

For a given z1, we apply the Newton-Rhapson method
to obtain ζ from this equation. Then, the complex
potential is given by

m
W==mmm lnζ (8)

2π

where m denotes the total strength of the sink. Here,
too, m covers both the upper half-plane, y›0, and
the lower half-plane, y⁄0. The electric potential is in
turn given by

mφ==mmm Real[lnζ] (9)
2π

The complex electric field can be obtained from

dW      m       1
mmm==-mm mmmmmm (10)
dz        w    1-ζ

and the x-component of the electric field by

. ∂φ   m 1
Ex==-mm==mm Real[mmmmmm ] (11)

∂x w        1-ζ

Numerical Method for the Electric Potential
in the Reservoir

The governing equation (1) is solved numerically in
the ρ-plane with the following boundary conditions: 

φ==1  at  ξ==ξa (12a)

φ==φb(η)  at  ξ==ξb for 0‹η‹ηc (12b)

∂φ
mmm==0  at  η==0, π (12c)
∂η

∂φ
mmm==0  at  ξ==ξb for  ηc‹η‹π (12d)
∂ξ

where ξa==ln(d/2) and ξb==ln(R)==0 represent the ξ
coordinate at the electrode surface and the outer wall
of the reservoir, respectively, and ηc==tan-1(w/2R) is
the η coordinate of the corner point C. The function
φb(η) is an electric potential function given from the
asymptotic solution for the channel, i.e., (9), with
φb(ηc)==0 for a specific m value dictated by the nu-
merical solution. A more detailed explanation of this
will be given later.

The governing equation (1) together with the bound-
ary conditions (12a)-(12d) is discretized by the cen-
tral difference algorithm with uniform grids in the ρ-
plane. In discretizing the Neumann-type boundary
conditions (12c) and (12d), we used a second-order
difference formula. For instance, the normal deriva-

z1   -mm (   1-ζ   m ln mmmmmmm )π
w

2
1

1-ζ 1

1-ζ -1
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Figure 3. The equi-potential lines (dashed) and electric field
lines (solid) obtained from the asymptotic solution (5) with
m==1. The increment of both contour levels is 0.02.

(a)

(b)

Figure 4. Sketches of the physical plane (a) and the trans-
formed ζ-plane (b) used to derive the asymptotic solution of
the Laplace equation for potential in the channel.
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tive ∂φ/∂ξ on the outer wall can be expressed in terms
of the boundary value φ1 at ξ==0 and its neighboring
values φ2 at ξ==-∆ξ and φ3 at ξ==-2∆ξ, with

∂φ     4φ2-φ3-3φ1mmm==mmmmmmmmmmm (13)
∂ξ           2∆ξ

The algebraic equation obtained after discretization
is then solved using the ICCG (Incomplete Cholesky
Conjugate Gradient) method5,6, using grids numbering
at least 201×201. Increasing the number of grids to
401×401 and 801×801 was also tested. Only a 2%
difference arises when the number of grids changed
from 201×201 to 401×401. Thus, most computa-
tions were performed with the grids at 401×401. In
order to apply the boundary condition (12b) at the
exit of the reservoir (or at the entrance to the channel),
we need to employ the asymptotic solution for the
channel given in the previous section. In this applica-
tion, we need to calculate the strength m, defined as 

∂φ
m==-

0

π

· mmm‚
d/2

d dη (14)
∂r

where ∂φ/∂r, the radial component of the electric field,
can be obtained using the relation ∂φ/∂r==exp(-ξ)∂φ/
∂ξ. We also used the second-order difference formu-
la, i.e., (13), to evaluate ∂φ/∂ξ. 

Thus, the computational procedure can be described
as follows:

(1) Set φb==0 all over the reservoir outlet, 0‹η‹ηc

at ξ==ξb.
(2) Solve the Laplace equation (1) with the bound-

ary conditions (12a)-(12d). 
(3) Calculate m using (14). 
(4) Using this m value, update the function φb from

(9) with the value of ζ computed from (7) for
z1==iy, where y==Rsinη, at each grid point at the
channel entrance (reservoir outlet) with 0‹η‹
ηc.

(5) Repeat (2)-(4) until convergence is attained.

Numerical Results
Figure 5 shows typical patterns of the equi-poten-

tial lines and the electric field lines that were obtained
numerically. Overall, the patterns are physically rele-
vant, indicating that the numerical method is correct.
They also reveal clustering of both lines, not only
near the exit of the domain, but also near the elec-
trode surface. Such clustering adjacent to the elec-
trode is more pronounced as the electrode size de-
creases. This means that the drop in potential across
the reservoir should increase as the electrode size
decreases. This figure can be compared with Figure
3, which was obtained from the asymptotic solution;
the overall patterns are very similar, indicating that

neither the numerical nor analytical method is erro-
neous. 

Figure 6 shows the patched pattern of the equi-
potential lines given by the finite volume method for
the circular reservoir, and the patterns given by the
complex function theory for the exit channel. Here,
the vertical grid lines at the interface for the latter
solutions are intentionally tilted slightly such that the
interface line exactly fits that of the reservoir side.
From this figure, we can see that the patching is
almost complete. Furthermore, the error arising from
such patching obviously decreases as the channel size
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Figure 5. Numerical results of the equi-potential lines (dash-
ed) and electric field lines (solid) where d==0.2 and w==0.2.
The potential is 1.0 at the surface of the electrode and decre-
ases at 0.02 increments. 

Figure 6. Patched pattern of the equi-potential lines given
by the numerical solution for the circular reservoir (left-hand
side domain; same parameter set as in Figure 3) and those
given by the analytic solution for the exit channel (right-hand
side domain). The potential line with a triangle mark on the
x-axis has a potential of zero, with the value increasing on
the left-hand side and decreasing on the right-hand side at
increments.
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decreases. 
Shown in Figure 7 are the distributions of Ex0, the

x-component of the electric field along the line y==0
obtained by the asymptotic solution, applicable to the
circular reservoir and to the straight channel, as well
as the distribution obtained by the numerical method.
We can see that the two asymptotic solutions are
indeed asymptotic to the numerical solution on each
side of the applicable region. 

Effective Potential Difference and Electric
Field

As mentioned previously, in order to calculate the
electric field within the channel, we need to know the
potentials at both ends. However, those values are not
known a priori and we must attain a working formula
to compute the effective potential difference or the
electric field within the channel. In this section, we
propose two formulae, one for the numerical method
and the other for the analytical method.

We let the channel length be L. Further, we define
∆V1 as the potential difference between the two chan-
nel ends and ∆V2 as the potential difference between
the anode and the end of the channel connected to the
reservoir surrounding the anode; since we are consid-
ering a symmetric configuration, the potential differ-
ence is the same on the other side of the channel.
Thus, the total difference in potential between the two
electrodes is 

∆V==∆V1++2∆V2 (15)

The electric field within the channel is given by E==
∆V1/L, from which we have 

∆V1==EL (16)

The relation between ∆V2 and E can be established
using either the numerical result or by theoretical
analysis. First, we considered the derivation of the
formula given from the numerical result. We noticed
that the electric current, Ew, across the full width of
the channel should be the same as the corresponding
one, i.e., the source strength across the reservoir, m==
Ew. In the numerical calculation for the reservoir, we
imposed a unit potential at the electrode surface and
zero potential at point C, the intersection of the outer
wall of the reservoir and the upper wall of the chan-
nel (see Figure 1 and Figure 4a). After numerical sim-
ulation of the Laplace equation for a certain set of d
and w, we were left with the sink strength m0, and mφ0,
the averaged potential at the outlet of the reservoir,
i.e., the channel inlet section. Since the asymptotic
solution for the potential is available at the channel
entrance, we can write 
mφ0==-0.0977m0

where the constant corresponds to the average poten-
tial mφ0 at m==1 obtained from the asymptotic solution
for the channel. Then, since the electric potential at
the electrode surface is maintained at 1 in the numeri-
cal simulation, we get ∆V20==1-mφ0 . For an arbitrary
value of m, we get ∆V2==∆V20(m/m0). Applying m==
Ew to this equation, we obtain

(1++0.0977m0)Ew∆V2==mmmmmmmmmmmmmm (17)
m0

Substituting (16) and (17) into (15), we obtain

V
E==mmmmmmm (18)

L++γ2R

where the constant γ is

1++0.0977m0     wγ==mmmmmmmmmmm mm (19)
m0 R

18) can be considered a general equation for
computation of the effective electric field E with V, L
and R given. The constant γ is a key parameter that
reflects the effect of reservoir design on E. If the
space between the electrode and the channel inlet are
replaced by a straight channel with the same width w,
then the constant γ must become 1. The radius of the
reservoir, R, shown in formulae (18) and (19), is not
explicitly taken as 1, so that these formulae to be used
in the general case when neither the channel length L
nor the channel width w are scaled by R.

Now we turn to the theoretical method to determine
the constant γ. Figure 7 shows the distributions of
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Figure 7. Distributions of Ex0, the x-component of the elec-
tric field along the line y==0, obtained by the asymptotic
solution for the circular reservoir (upper solid line) and for
the straight channel (lower solid line) with w==0.2, and that
obtained by the numerical method (symbols) with d==w==0.2.
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Ex0, the x-component of the electric field along the
line y==0 for the case where d==w==0.2, obtained by
the asymptotic solution for the circular reservoir and
for the channel, together with the distribution given
by the numerical method. The potential difference
∆V2 between the electrode surface and the channel
entrance, (17), corresponds to the area beneath the
curve designated “numerical reservoir” in Figure 7:

∆V2==
d/2

1

Ex0dx

We can obtain the equivalent from the relationship
∆V2==φA

num-φB
num. If we use the asymptotic results,

this may be computed from

∆V2==(φA
res-φJ

res)++(φJ
cha-φB

cha) (20)

where the first term is given from the “asymptotic
reservoir” result and the second from the “asymptotic
channel” result. Point J is determined by the require-
ment that the electric field computed from the asymp-
totic reservoir solution be the same as that obtained
from the channel side, i.e., m/w. From the asymptotic
reservoir solution, we get

mφA
res≅-mmm lnd

2π

from (5) for small d. Next we also get

m      ε2

φJ
res≅-mmm lnmm

2π      2

from (5) for small ε defined as ε==1-rJ. Here the
value of ε can be found from the condition of point J,
which is

∂φ    m
·-mmm‚  ==mm

∂r η==0     w

so that ε==w/π. Then,

m     d   w   2φA
res-φJ

res==-mmm ln[mm· mm‚ ] (21)
2π     2 π 

On the other hand, from the channel solution (8), we
have

mφJ
cha==mmm lna

2π

where a is the -ζ value given from (7) with z1==-ε.
Then the equation for a is

Solving this equation, we get a==1.8349. Similarly,
φB

cha can be obtained from

mφB
cha==mmm lnb

2π

where b is the -ζ value from (7) when z1==0. Solving
the resultant equation, we obtain b==0.4392. Thus, we
can write

m         aφJ
cha-φB

cha==mmm ln· mm‚ (22)
2π         b

Substituting (21) and (22) into (20), we can derive the
following:

m a            d   w  2

∆V2==mmm{ln· mm‚-ln[mm· mm‚]}2π        b           2   π

The constant γ to be used in (18) then becomes

w                 1         d      w 2

γ==mmm{0.715-mm ln[mmm· mmm‚]} (23)πR                2      2R    πR

where R is again included so that this formula can be
applied to the general case when neither w nor d are
scaled by R.

We found that this analytical result is best compared
with that from the numerical results by replacing the
constant 0.715 with another parameter β, so that 

w          1       d      w  2

γ==mmm{β-mm ln[mmm· mmm‚]} (24)πR        2      2R   πR

The solid lines shown in Figure 8 are drawn with

β==0.75-0.40d/R (25)

which is an empirical formula for the parameter β
that gives the best agreement with the numerical
results. As seen from this figure, formula (24) with β

2   1   a    ln 1   a-1 
1   a   1

-2    0

122 Biochip Journal  Vol. 1(2), 117-123, 2007

Figure 8. Effects of electrode diameter d and channel width
on the value of γ used to calculate the electric field within the
channel between two circular reservoirs. The symbols denote
the numerical results, while the solid lines are given by for-
mula (24) with (25).
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given as (25) can be used for a wide range of para-
meter values of w/R and d/R.

It is also intuitively clear from (18), (24) and (25)
that, when the reservoir radius, channel width and
electrode diameter are kept constant, the values of β
and γ are also kept constant; so, if only the channel
length is decreased, the entrance effect is increased.
On the other hand, decreasing d/R also increases the
effect of the channel entrance on the electric field, as
seen from (24) and (25). However, w/R has the rever-
se effect; that is, decreasing w/R decreases the chan-
nel entrance effect, as seen from (24). As a concrete
example, consider a 10 mm-long and 0.1 mm-wide
channel attached to circular reservoirs of radius 5 mm
having electrodes of diameter 0.1mm. From equation
(25), we obtain β==0.74 and from (24), γ==0.052; thus,
we can estimate that there will be a 5.2% over-predic-
tion when the conventional formula E==∆V/L is used.

Conclusions

In this paper, we presented numerical and analytical
methods for solving the Laplace equation for the elec-
tric potential inside a space composed of a channel
with two reservoirs attached to either end, each with
an electrode at its center. A working formula was
then derived from the solutions obtained for predict-
ing the electric field inside the channel. The formula
very accurately predicts the electric field for a wide
range of parameter values. The entrance effect on the

electric field within the channel increases when the
channel length is decreased. The entrance effect also
increases when the electrode diameter is decreased
and channel width increased with reservoir size re-
maining unchanged.
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