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Abstract

The experiments based on high-throughput technolo-
gy have been producing massive genomic data in-
cluding protein-protein interactions, genome-wide
mRNA expression and whole genome sequences,
which allows the reconstruction of genome-wide bio-
logical networks representing relationships or interac-
tions between genes or proteins. The network ap-
proach to biology is becoming the main framework to
understand biological systems consisting of numer-
ous dynamic networks of biochemical reactions and
signaling interactions between cellular components.
This is mainly due to efficient representation of a large
amount of biological information. Many statistical
models have been built and applied to construction of
genome-wide biological networks from various type
of high-throughput data. In this study, we survey sta-
tistical approaches to construction of four main bio-
logical networks with their pros and cons: gene regu-
latory networks, protein-protein interaction networks,
metabolic networks and signal transduction networks.
In addition, we also investigate the methods describ-
ing dynamic behavior of gene regulatory networks
and signal transduction networks.

Keywords: Bayesian networks, Boolean networks, State
space approach, Flux balance analysis, Petri nets

Introduction

The massive amount of ‘omics’ data including geno-
mics, proteomics and metabolomics have offered op-
portunities to construct various biological networks
such as, respectively, gene regulatory networks, pro-

tein-protein interaction (PPI) networks and metabolic
networks. Although current technology does not repre-
sent the whole cellular system as a network because
of its redundancy and complexity, a master global reac-
tion network could still be formulated to represent the
complete repertoire of possible biochemical reaction
systems within the cell1-3. Genome-wide biological
networks can be built based on interaction information
between biological elements from genomic data pro-
duced by high-throughput technology. Thus, interac-
tion analysis has emerged as an increasingly popular
framework for exploring the complex system of rela-
tionships that characterize the functional organization
of cellular environments4. 

The large-scale interactions are estimated directly by
experiments or indirectly inferred by statistical models
with experimental data. Here, we will focus on the
statistical approaches to the construction of genome-
wide biological networks from various types of high-
throughput data. As the representation of a biological
process by networks enables a systematic characteriza-
tion of its structural properties such as the underlying
design principles via the analysis of network topology,
network has been becoming a popular framework in
genome-wide biological research. Prior to construction
of biological networks, it is useful to know the mathe-
matical concept on network.

Network

Network can be mathematically modeled as graphs
consisting of nodes and edges representing elements
and connections, respectively. A graph can be of two
types: a directed graph with arcs or arrows, and an
undirected graph with edges. To analyze the graph,
many features are measured including degree, distance
and clustering coefficient. The degree of a node is
determined by the number of edges connected to that
node and the distance between two nodes is defined
as the shortest path length between these two nodes.
The clustering coefficient (γv) describes the connec-
tivity of the neighbors of a given node, i.e., the existing
edges in proximity of that node divided by all possible
connections among the neighbors (Figure 1). The nei-
ghbors of a given node in network with strong local
clustering are more likely to be connected to one
another than would be expected through chance alone.
It is crucial to measure which nodes in a network are
more influential than others. For example, economic
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considerations can dictate that one important target
protein is selected to carry out an experiment from a
protein interaction network suggesting multiple poten-
tial targets. 

The importance of each node in the graph is often
measured by assigning a numerical value to each node
in the network and ranking of it; this is called centra-
lity. There are many different concepts for computing
the centrality5. Table 1 shows the values of various
centrality indices corresponding to each node of an
undirected graph shown in Figure 2. Node 6 has the
highest centrality in distance-based centralities includ-
ing eccentricity and closeness as well as shortest-path-
based centrality, while node 13 has the highest degree
centrality and feed-back based centralities including
Katz status, eigenvector and PageRank. The use of
centrality may lead to more rational approaches in
experimental design, but it should be considered with-
in an exploratory process under the relevant biological
question. 
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Figure 1. Calculation of clustering coefficient at three select-
ed nodes (blue node).

Table 1. Various centrality indices corresponding to each node of Figure 1. The highest centrality index in each method is
marked in gray. The centrality index was calculated using CentiBiN program (http://centibin.ipk-gatersleben.de/).

Type of centrality*

Node Degree Eccentricity Closeness
Shortest path Katz status Eigenvector PageRank

Cdeg(v) Cecc Cclo(v)
betweenness CKatz Ceiv Cpr

Cspb(v) (α==0.2) (λ==λmax) (d==0.3)

0 1 0.125 0.010 0 1.473 0.009 0.032
1 1 0.125 0.010 0 1.473 0.009 0.032
2 1 0.125 0.010 0 1.473 0.009 0.032
3 4 0.143 0.013 51 2.363 0.026 0.096
4 3 0.167 0.015 60 2.397 0.050 0.060
5 1 0.2 0.014 0 1.448 0.042 0.030
6 3 0.25 0.018 98 2.238 0.123 0.064
7 3 0.2 0.017 84 2.376 0.074 0.059
8 3 0.2 0.018 90.5 2.365 0.248 0.061
9 2 0.167 0.017 38.5 2.293 0.305 0.044

10 2 0.167 0.017 38.5 2.293 0.305 0.044
11 1 0.125 0.012 0 1.820 0.221 0.030
12 1 0.143 0.011 0 1.449 0.016 0.030
13 8 0.143 0.016 93.5 4.102 0.655 0.172
14 1 0.125 0.012 0 1.820 0.221 0.030
15 1 0.125 0.012 0 1.820 0.221 0.030
16 1 0.125 0.012 0 1.820 0.221 0.030
17 1 0.125 0.012 0 1.820 0.221 0.030
18 1 0.125 0.012 0 1.820 0.221 0.030
19 3 0.167 0.014 18 2.244 0.047 0.064

*Each centrality is defined as follows. Let G==(V,E) be an undirected graph. The deg (v) denotes the degree of the node v in an undirected graph;
dist (s,t) denotes the length of a shortest path between the nodes s and t; δst denotes the number of shortest paths from s to t and δst(v) the number
of shortest path from s to t that use the node v; A represents the adjacent matrix of the graph G. For the more detailed description please see the
paper of Junker et al.5. 

1                                         1                                    1 ∞ →
Cdeg(v)=deg(v), Cecc==mmmmmmmmmmmmmmmm , Cclo(v)==mmmmmmmmmmm ,  Cclo(v)==mmmmmmmmmmm , Cspb(v)== »  » δst(v), Ckatz(v)==»αk(AT)k 1,

max{dist(s,t):t∈V}               »t∈V dist(s,t) »t∈V dist(s,t)             s∈V∧s≠v t∈V∧t≠v k==1

�λCeiv==ACeiv, Cpr==dPCpr++(1-d )1

4γv at node 3==0/· ‚==02

3      1γv at node 4==1/· ‚==mm2     3

5      1γv at node 7==2/· ‚==mm2     5
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Networks can also be characterized by network
motifs, which are patterns of interconnections occurr-
ing in the networks at numbers that are significantly
higher than those in randomized networks. The ran-
domized networks of a given network are usually gen-
erated by arbitrarily rewiring the connections of the
network locally, keeping the degree distribution at a
global level. One of the most significant motifs in both
Escherichia coli and yeast transcription networks is the
feed-forward loop (FFL), a three-gene-pattern com-
posed of two input transcription factors, one of which
regulates the other, which both jointly regulate a target
gene6,7. There are eight types of FFLs according to
signs of three edges (Figure 3). These can be further
classified into two groups: coherent FFL and incoher-

ent FFL. The indirect path in coherent FFLs has the
same overall effect on the target as the direct path,
while the effect of the indirect path is opposite to that
of direct path. The most abundant FFL type in tran-
scriptional networks is type 1 coherent FFL8.

Gene Regulatory Networks 

Biological processes such as morphogenesis, cell
proliferation, differentiation, apoptosis and homeosta-
sis are basically related to gene regulation mediated
by transcription factors that can recognize and bind
specific DNA sequence elements in the regulatory
regions of genes. The gene regulatory network is usu-
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Figure 2. An undirected gra-
ph with twenty nodes.

Figure 3. The eight types of FFLs consisting of three nodes according to signs of three edges. The symbols of → and → repre-
sent activation and repression, respectively.
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ally represented by a relationship between transcription
factors and their targets. The network representation
unveils the global organization of transcriptional regu-
lation such as its modular and hierarchical structure9-12

and the fact that, on average, every target gene is con-
trolled by two transcription factors13,14. The modeling
of gene regulatory network from experimental data is
a challenging task because the problem is combina-
torial mission finding the right combination of regu-
lators and available data can be an infrequent and in-
accurate process15. The gene expression data from
DNA microarrays have been utilized for inference of
transcriptional regulatory networks using models such
as Bayesian networks, Boolean networks, state space
approach and differential equations. Among these
models, Bayesian networks and Boolean networks
have been frequently used for the inference of gene
regulatory networks as large-scale qualitative model-
ing frameworks. 

Bayesian networks can be used to represent condi-
tional dependencies and independencies among vari-
ables corresponding to gene expression measurements.
Given a set of genes and their expression patterns, a
Bayesian approach finds the network that explains the
observed patterns with the maximum of probabilities
(Figure 4). Thus, a genetic regulatory system can be
modeled by a directed acyclic graph (DAG) G==(V, E),
with V representing a set of nodes and E representing
a set of edges in Bayesian networks. The nodes repre-
sent genes and correspond to random variables xi des-
cribing the expression level of gene i. The conditional
distributions p(xi |parents(xi)) specify a joint probability
p(x) as:

n
p(X)==Π p(xi| parents(xi)),

i=1

where parents (xi) indicate the variables corresponding
to the direct regulators of gene i in G and n represents
the number of nodes (genes). There are three essential
parts for learning a Bayesian network: model selection
(choice of a DAG as candidate), parameter fitting
(searching for best conditional probabilities for each
node given a graph and experimental data) and fitness
rating (scoring each candidate model). 

The model selection is the most critical step because
the number of all possible DAGs on N nodes (genes)
grows super-exponentially as the node number N in-
creases15. Figure 5 shows the Bayesian learning pro-
cess for small data set including expression values of
six genes (A-F) in seven experiments. The number of
DAGs in this system is around 3.78∙106. This shows
that heuristics are required to efficiently learn a Baye-
sian network. The structure of DAG in Bayesian
networks limits feedback loops. Dynamic Bayesian

networks (DBNs), on the contrary, are able to feedback
regulatory mechanisms by separating input nodes from
output nodes (Figure 4(B)). However, DBNs suffer
from various computational challenges and necessitate
time-course data, which in some domains are not feasi-
bly attainable in an applicable form16. Sachs and Itani17

proposed a method for representing cyclic structures
using Generalized Bayesian networks (GBNs) which
enable structure learning in a cyclic domain, relying
an perturbations which break the cyclic structure. 

Another extensively investigated qualitative model
for gene regulatory system is the Boolean network
model, originally introduced by Kauffman18. A Boo-
lean network can be also defined by a graph G==(V, F),
that is, a set of nodes (genes) V=={x1, x2,..., xn} (where
xi∈{0,1}) and a set of Boolean functions F=={f1, f2,...,
fn}, which represents the transitional relationships bet-
ween time points. As Boolean networks utilize a Bool-
ean variable xi∈{0,1} that define the state of a gene i
expressed by a network node as active (on, 1), inac-
tive (off, 0), the continuous gene expression values
should be changed into binary data prior to estimation
of a Boolean network. Discrete assignment can be per-
formed by clustering and thresholding using support
vector regression19. The gene status at time point t++1
is determined by the values of some other genes at a
previous time point t using a Boolean functionas fi as: 

xi (t++1)==f (xj1(i)(t),xj2(i)(t),...,xjk(i)(t))

where jk(i) indicates the mapping between gene net-
works at different time points. 

The rules of regulatory interactions between genes
are obtained through the Boolean function F; that is,
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Figure 4. Graphical representation of Bayesian networks. (A)
A static Bayesian network, (B) A dynamic Bayesian network
including a cyclic regulation. 
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the target gene is predicted by other genes through a
Boolean function. In case gene expression cannot be
described adequately by only two states, probabilistic
Boolean networks can be used. Probabilistic Boolean
networks (PBNs) combine more than one possible
transition Boolean functions, so that each one can be
randomly selected to update the target gene based on
the selection probability, which is proportional to the
coefficient of determination (COD) of each Boolean
function20. PBN generalizes the standard rule-based
interactions of Boolean networks into the stochastic
settings. PBN has certain equivalences to DBN. Läh-
desmäki et al.21 demonstrated that PBNs and a certain
subclass of DBNs can represent the same joint proba-
bility distribution over their common variables. The
PBN has been used to construct networks in the con-
text of several cancer studies, including glioma22, mela-
noma23 and leukemia24. 

We surveyed two main approaches including Bayes-
ian and Boolean networks for qualitative models in
gene regulatory networks. Besides these two approa-
ches, the state-space approach has been also used for

modeling gene regulatory network25. The state-space
model is one of the most powerful methods to model-
ing a dynamic system and has been widely employed
for engineering control systems26. Hirose et al.27 pro-
posed a module-based gene network estimation using
state space model as below

xn==Fxn-1++vn, n∈N,

yn==Hxn++wn, n∈Nobs,

where F∈Rk×k is the state transition matrix, H∈Rp×k

is the observation matrix, vn-Nk(0k,Q) and wn-Np (0p,R)
are the system noise and the observation noise, res-
pectively, and yn∈Rp and N represent a series of vec-
tors containing observed expression levels of p genes
at the nth time points and the total number of time
point, respectively. This approach can be nicely appli-
ed to the case of short time course microarray data
with several replicated data in each time point. The
dimension of system variable xn is usually determined
by Bayesian Information Criterion (BIC) or Probabi-
listic Principal Component Analysis (PPCA) from ob-
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Figure 5. The Bayesian learning process for small data set including expression values of six genes (A-F). Da and G represent
data and DAG, respectively.
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servation data. All models described above do not
consider detailed information such as kinetics given
by the system but capture the essential information
about network such as interactions between elements.

Quantitative modeling of gene regulatory networks
can be simulated by differential equations. That is,
differential equations can describe gene expression
changes as a function of the expression of other genes
and environmental factors. Ordinary differential equa-
tions (ODEs) widely utilized to model dynamical sys-
tems in science and engineering may be applied to the
modeling of the gene regulatory system:

dx
mm==f (x,p,u,t),
dt

where x (t) is the gene expression vector at time t, f is
the function that describes the rate of change of x un-
der the model parameter set p and external perturba-
tion u. For identification of large-scale gene regulatory
networks from time-series microarray data, the differ-
ential equation is usually approximated by difference
equation with linearization of function f as: 

xi[t++Δt]-xi[t]     Nmmmmmmmmmmmm==»wi,j∙xj[t]+bi∙u, i==1,..., N,Δt         j=1

where wi, j represents the interaction matrix, bi indicates
the effect of the perturbation effect u on gene i and
xi[t] represents the expression value of gene i at time t.
Information of gene interaction is obtained by weight
matrix wi, j which should be reduced to a sparse matrix. 

The regularized least squares regression such as
LASSO (Least Absolute Shrinkage and Selection Oper-
ator) can solve the linear equation system with con-
straint of sparseness of the weight matrix (interaction
matrix). Chen et al.28 proposed the stochastic differen-
tial equation (SDE) to reflect the stochasticity in gene
expression. The SDE is widely used for modeling irre-
gular motion, variability or uncertainty due to time
series. From time t to t++Δt, the dynamic transcription
and degradation process can be modeled as: 

x[t++Δt]-x[t]
mmmmmmmmmmm==(gt-λ)Δt++σΔWt,x[t]

where x(t) represents the expression value of target
gene at time t, gt is the transcription rate, λ is the
degradation rate and σΔWt is the noise or random error
captured by normal distribution N(0,σ2Δt). When Δt
→ 0, SDE can be represented as: 

dxtmmm==(gt-λ)dt++σdWt,dt

where Wt is the standard Brownian motion. The SDE
is useful especially when the network local connec-
tions such as the strict neighborhood of one target are

interested29. 

Protein-protein Interaction Networks 

Protein-protein interactions (PPIs) are playing impor-
tant roles in many cellular processes such as transcrip-
tion, splicing, translation, cell cycle control, secretion
and the assembly of enzymatic complexes. With avail-
ability of large-scale and high-throughput screening
technology such as the yeast two-hybrid (Y2H) system,
the protein network is constructed by combining pair-
wise interactions among all proteins considered. The
Y2H approach has superior speed and robustness, but
there are some drawbacks. For example, it can only
consider interactions that occur within the nucleus of
the yeast cell where the active transcription factor is
reconstituted. Thus, proteins localized into other cellu-
lar compartments cannot interact, even if they have
real interactions. In addition, the system cannot catch
the dependence of interaction on post-transitional
modifications such as phophorylation, acetylation or
glycosylation. 

This limitation of Y2H can be overcome by the affin-
ity purification coupled to mass spectrometry (AP-MS).
That is, AP-MS approach can identify interactions that
occur in the native cellular environment. Interactions
depending on post-transitional modifications of one
or more components of the complex can be identified
by the AP-MS approach. Thus, AP-MS can detect
higher order interactions, while the Y2H system deter-
mines binary interactions. Protein interactions can be
modeled by graphs similar to gene regulatory networks.
The proteins correspond to the nodes of the graph, and
edges between protein pairs indicate an interaction.
Unlikely gene regulatory networks, the edges in pro-
tein interaction networks are usually undirected be-
cause only the presence or absence of an interaction
between two proteins is detected. 

The main problem in construction of protein net-
work is the low quality of high-throughput data such
as Y2H and AP-MS. Many evaluation studies have
reported discrepancies between data sets, large error
rates, lack of overlap and contradictions between ex-
periments30-33. For the measure of reliability of each
PPI, Jansen et al.34 proposed to compute a likelihood
ratio for each protein pair, gene i and gene j. For exam-
ple, let yij (k) and Gp be an element of Y that shows a
genomic feature of protein pair (gene i and gene j) and
an undirected graph (PPI network), k==1 respectively,
while represents an experiment corresponding to Y2H.
The value of P(Y|Gp) is 0 or 1 according to absence or
presence of the protein pair of gene i and gene j res-
pectively, in the Y2H experiment. 
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Thus, the reliability of the PPI between gene i and
gene j is given by the likelihood ratio as below

L(i,j)==P(yij(1),...yij(N)|pos)/P(yij(1),...yij(N)|neg),

where ‘pos’ and ‘neg’ are the positive and negative
sets of protein pairs constructed in advance and N is
the number of experiments such as Y2H and AP-MS.
If each experiment is conditionally independent, the
likelihood can be written as 

P(yij(1)|pos)           P(yij(N)|pos)
L(i,j)==mmmmmmmmmm×...×mmmmmmmmmm

P(yij(1)|neg)           P(yij(N)|neg)

Under a given undirected graph Gp, the likelihood of
PPI information Y can be computed by a binary Mar-
kov network model35, 

1
P(Y |Gp)==mm Π   L(i, j),

Zy e(i,j)∈Gp

where e(i, j) is the undirected edge between gene i and
gene j, Zy is the normalizing constant. The most relia-
ble graph structure Gp or PPI networks is obtained
when the value of P(Y |Gp) is maximized. 

Chiang et al.36 characterized the error statistics in
PPI networks of Saccharomyces cerevisiae with three
traits using a direct graph model for bait to prey sys-
tems and a multinomial error model in all published
large-scale datasets: the set of tested interactions, arti-
facts that lead to false-positive or false-positive obser-
vations and estimates of the stochastic error rates that
affect the data. That is, there are three types of rela-
tionships between protein pairs of an experimental
data set: tested with an observed interaction, tested
with no observed interaction and untested. This method
can benefit the design of future protein interaction
experiments. The reliability in PPI can be increased
with other genomic data such as gene expression. Na-
riai et al.37 proposed a statistical method for estimating
gene regulatory networks and PPI networks simultane-
ously based on microarray data, PPIs and protein local-
izations, essentiality phenotypes and functional cate-
gories by unifying Bayesian networks and Markov
networks. 

Metabolic Networks 

In the past, metabolism was considered as a combi-
nation of distinct pathways such as glycolysis, citrate
cycle, urea cycle and many others. However, all these
pathways are connected to each other. The cell utilizes
the metabolic network to generate energy and to make
the cellular components that are necessary for its grow-
th and survival. For a completely sequenced genome,
reconstruction of metabolic network can be started

with the E.C. number (Enzyme Commission number)
of each gene. If the EC number is unavailable in the
original annotation, a reaction data base such as KEGG
LIGAND38 can be used for the search of the EC num-
ber for each gene. The reaction list based on EC num-
ber can be converted to a connection matrix represent-
ing substrate-product pairs. Thus, a genome-wide me-
tabolic network model can be reconstructed for well-
annotated genomes. 

However, most annotation efforts fail to assign func-
tion to 40-60% of sequences and large numbers of
sequences may have non-specific annotations, which
results in ‘missing enzymes’ or ‘missing genes’ in re-
constructed metabolic network. Green and Karp39 has
developed a program called PathoLogic that efficiently
combines sequence homology and pathway-based evi-
dence via Bayesian network to identify candidates for
filling pathway holes in Pathway/Genome databases.
This program uses a set of sequences encoding the re-
quired activity in other genomes to identify candidate
proteins in the genome interest, and then evaluates
each candidate by using a simple Bayes classifier to
determine the probability that the candidate has the
desired function. Thus, given the parameter vector of a
particular candidate enzyme, one can determine the
posterior probability of the candidate having the desir-
ed functions. When the posterior probability of the
candidate having function exceeds a threshold, the
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Figure 6. The structure of the Bayesian classifier used in
PahoLogic program39. Description of each term is given as fol-
low: Has-function is true if the protein has the function requir-
ed the pathway hole, false if it does not; Shotgun score is the
number of query sequence whose BLAST output included the
candidate sequence; Best E-value is the negative log of the E-
value for the best alignment of the candidate with a query sequ-
ence; Average rank is the averaged rank of the candidate sequ-
ence in the BLAST output lists; Average fraction aligned is
the average of each alignment length normalized by the length
of the query sequence; Pathway direction is true if the hit in
the same direction as another gene in the same pathway; Adja-
cent-rxns is true if the hit is adjacent to one of the genes cod-
ing the enzyme for an adjacent reaction in the pathway.

Adjacent rxns

Has function

Best E-value Shotgun score

Average rank

Average
fraction aligned

Pathway
direction



candidate is considered as ‘has-function’ enzyme cat-
alyzing the desired reaction (Figure 6). 

Geng et al.40 adopted the same approach to identify
the list of candidate enzyme, but employed an
additional model consisting of a mixture of k radial
basis functions (RBFs) and a linear term to predict
whether these candidates are has-function or no-func-
tion enzymes. They calculated the model order and the
parameters using a reversible jump Markov-chain-
Monte-Carlo (MCMC) technique to avoid the difficul-
ty in analytic integration of high-dimension of nonlin-
ear functions. The principle of MCMC is to draw ran-
dom samples from an ergodic Markov chain whose
equilibrium distribution is the target posterior distribu-
tion. Since both approaches are based primarily on
sequence information, they have limitation for enzy-
me with an extremely divergent sequence. 

Once the metabolic networks are constructed, the
next step is to study the dynamics of metabolites on
them. The dynamic behavior of metabolic networks
cannot be easily predicted due to lack of kinetic para-
meters involved in a number of biochemical reactions
in the cell. Instead, the steady-state functionality of
genome-scale metabolic networks has been easily
described by constraint-based models41, which repre-
sent the metabolic network via a series of physico-che-
mical constraints including stoichiometric network
connectivity with the small number of parameters.
These models can also be used to obtain a particular
flux distribution by finding optimal distribution given
a particular objective function using flux balance analy-
sis (FBA)42,43. The FBA approach applied to genome-
scale constraint-based metabolic models can be ex-
pressed as: 

max cTv
subject to Sv==0 (0‹vi‹vi

max)

where v represents flux distribution vector, c repre-
sents vector of objective coefficient, and S denotes sto-
ichiometric matrix. The metabolic flux distribution
vector v can be obtained with linear optimization. It
should be remembered that a complete metabolic net-
work shows all the possible modes of material flows
in the cell. This indicates that all parts in metabolic
networks might not be active. Thus, it is necessary to
identify the correct active reactions to be included in
the model from a larger set of possible enzymatic reac-
tions based on comparison between model predictions
and experimental data. 

Herrgård et al.44 proposed a method called optimal
metabolic network identification (OMNI) for determin-
ing the active reactions in a genome-scale metabolic
network based on a limited number of experimentally
measured fluxes. This method uses bi-level optimiza-

tion problem. That is, the outer optimization problem
searches through a set of reactions to include in the
model, while the inner optimization problem produces
a flux distribution as a solution to a FBA problem. Let
y binary vector indicating whether a reaction is part
of the model or not, the OMNI can be expressed as
follow:

yopt==argmin »wi|v i
opt-v i

exp|
i∈My

vopt==argmaxv cTv

subject to Sv==0

0‹vj‹v j
max j∈F

0‹vk‹v k
maxyk k∈D

subject to
vl==v l

exp l∈E

vopt
biomass›vmin

biomass

yk=={0,1}∀k∈D

» (1-yk)==K
k∈D

The variables w, F, D and K represent weight vector
for measured flux, set of reactions that are fixed, set
of reactions that can be deleted from the model and
number of reaction deletions allowed in the model,
respectively. This method is applied to intra-cellular
flux data for five experimentally evolved E. coli stra-
ins, and identified specific bottleneck reactions in the
metabolic model44. Activation of only specific path-
ways from all possible metabolic reactions in a given
organism may be due to regulatory effects working
under particular conditions, as well as uncertainties
about specific cofactors.

Signal Transduction Networks 

A signal transduction pathway was previously con-
sidered to be a linear cascade including PPIs, protein
modifications and small signaling molecules such as
Ca2++, lipids or other second messengers45. For exam-
ple, the activated platelet-derived growth factor
(PDGF) receptor can activate different signaling cas-
cades: (i) a MAPK signaling cascade, (ii) phospholi-
pase C gamma, (iii) phosphoinositide-3-kinase and
Akt and (iv) can trigger a pathway that finally results
in stabilization of β-catenin46. These linear pathway
models might be enriched by negative as well as posi-
tive feedback loops. The negative feedback loops can
limit the strength or duration of a signal, while positive
feedback loops create an ultra-sensitive activation of
the pathway and a bi-stable behavior. Based on detail-
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ed analysis of Wnt related signaling pathways, Kestler
et al.45 suggested that Wnt signaling operates within
an interwoven Wnt signaling network rather than func-
tioning as independent linear cascades. 

The organization of signaling pathways as networks
indicates a possibility of cross-talk that might occur
with other signaling pathways. Currently, the construc-
tion of signal transduction networks at the genome-
scale is still problematic due to the lack of experimen-
tal data. Thus, the signal transduction networks at the
genome-scale are approximated by ortholog abstrac-
tion, with species-specific differences between homo-
logous molecules from various species being ignored.
Just as metabolic networks describe the potential path-
ways to be used for carrying out metabolic tasks, these
signal transduction networks describe potential path-
ways to be employed for regulation of gene expression
in eukaryotic cells. One of the representative signal
transduction databases, the TRANSPATH database,
has used this approximation for supplement of incom-
plete data in the pathways47. 

Microarray studies using cell assays with external
interventions into the signaling process also allow for
the systemic analysis of the pathways. Froehlich et
al.48 proposed a Bayesian method for reconstructing
signaling pathways from secondary effects, which
were observed on microarray data after silencing genes
of interest via RNAi. They distinguished between sil-
enced genes (S-genes) and genes showing a down-
stream effect (E-genes). Each E-gene is attached to a
single S-gene. Knocking down the kth specific S-gene
(Sk) interrupts signal flow in the downstream pathway,
and an effect on the E-genes attached to Sk and all S-
genes depending on Sk is expected. Thus, the outcomes
of experiments with n knock-downs and m E-genes in
total can be summarized in an m×n data matrix D.
According to Bayes’ formula a specific network hypo-
thesis Φ=={0,1}n×{0,1}n can be scored as: 

P(Φ|D)∝P(D|Φ)P(Φ)

Note that Φij∈{0,1} depending on whether the edge
i→ j presents or not. If the P(Φij) has a Laplacian dis-
tribution with parameter λ, it can be represented as:

λ
P(Φij|λ)==mmexp(-λ|Φij-Φ̂ij |)2

Thus, we can write down the log-posterior of P(Φ|D)
as below:

log P(Φ|D)∝log P(D|Φ)++log P(Φ)
∝log P(D|Φ)-λ»|Φij-Φ̂ij |

i,j

The λ specifies the trade-off between the model’s fit
data and prior assumptions. For example, setting λ→
∞ corresponds to completely trusting the prior while

λ==0 leads a maximum likelihood estimate, i.e., com-
plete trust in data. The Akaike Information Criterion
(AIC) can be used for optimal choice of λ, 

AIC(λ,Φopt)==-2log P(D|Φopt)++2d(λ,Φopt)

where d(λ,Φopt) denotes the number of free parameters
(the number of unknown edges) in the network struc-
ture Φopt. The optimal value of λ is obtained when the
AIC is minimized.

The dynamic behavior of the signal transduction
network can be described by various models such as
ordinary differential equations and Petri nets. While
ordinary differential equations have been mainly used
as the techniques for quantitative modeling and simu-
lations, Petri nets have been employed for qualitative
modeling and analysis of various biological pathways
since many theoretical investigations on Petri nets such
as structural analysis of systems49. A Petri net is a
directed-bipartite graph with two different types of
nodes: places and transitions. Bipartite denotes that
they consist of two types of nodes called places P==
{p1,...,pn} and transitions T=={t1,...,tn}, and directed
arcs, which are weighted by natural numbers and con-
nect only nodes of different types. Places usually rep-
resent the passive system elements such as states or
biological species like proteins or metabolites, while
transitions denote active system elements such as
events or activation/deactivation or chemical reactions.
Places are depicted as circles and transitions as rectan-
gles (Figure 7). 

The standard Petri net models are discrete while the
hybrid Petri net (HPN) comprises generally discrete
as well as continuous parts. Since Matsuno et al.50 have
demonstrated that HPN has high potential to model and
simulate biological pathways, many biological path-

198 Biochip Journal  Vol. 3(3), 190-202, 2009

Figure 7. A Petri net consisting thee places (p1, p2, p3) and
four transitions (t1, t2, t3, t4). The place can represent biologi-
cal elements such as proteins and metabolites while the transi-
tion can represent biochemical reactions in biological net-
works. 

p1

p2 p3

t4 t1 t2 t3



ways have been created with technique of HPN or its
extension: apoptosis induced by protein Fas51, Notch-
Delta signaling pathway in Drosophila52, gemcitabine
chemotherapic drug pathway53, Huntington’s disease54,
role of interleukin-6 in the fate of haematopoietic stem
cells55, Raf-1 kinase inhibitor protein on the extracellu-
lar signal regulated kinase56. Nagasaki et al.57 proposed
a powerful Petri net architecture hybrid functional
Petri net with extension (HFPNe) which involves all
the functions of existing high-level Petri nets. That is,
each ordinary Petri net, stochastic Petri net, colored
Petri net, and HPN can be treated as subset of the
HFPNe. 

A colored Petri net assigns data values to the tokens
and expressions are attached to the arcs, which defines

the constraints on the token values in the input places
to enable the transitions, and defines the token values
produced by the firings in the output places58. A sto-
chastic Petri net takes into account uncertainty attached
to data. Cell Illustrator (http://www.cellillustrator.
com/) is a pathway simulation tool which employs the
HFPNe as a basic architecture. Figure 8 shows a screen
shot of Cell Illustrator which displays a double-nega-
tive feedback loop (DNFL) of lsy-6 and mir-273 mi-
RNAs that determine the ASE cell fates in C. elegans,
i.e., whether the cell will be ASE left (ASEL) or ASE
right (ASER). In this figure, Petri net elements of pla-
ces and transitions have been changed to pictures of
biological images which reflect the roles of these ele-
ments, which makes pathway models with HFPNe
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Figure 8. HFPNe model of
the ASEL/ASER in Cell Illu-
strator. The model is availa-
ble at http:www.csml.org/
csml-models/.



more familiar to biologists. By this DNFL model, Sai-
to et al.59 demonstrated miRNAs could be effectively
handled with the HFPNe architecture. Sackman et al.60

demonstrated that the Petri net approach can be used
to build a discrete model which reflect provably the
qualitative biological behavior without any knowledge
of kinetic parameters in the mating pheromone res-
ponse pathways of Saccharomyces cerevisiae. This
suggests that the Petri net approach would be prevail
in modeling and analysis of large and complex signal
transduction pathways which including lots of missing
kinetic data.

Conclusions

The completion of genome sequences and subse-
quent high-throughput mapping of molecular networks
have allowed the study of biology from the network
perspective61. In addition, emerging results have indi-
cated that cellular function is a contextual attribute of
strict and quantifiable patterns of interactions between
the myriad of cellular constituents in spite of the impor-
tance of individual molecules. Thus, the network ap-
proach to biology would be the main framework to
understand biological systems. We surveyed statistical
approaches to construction of biological networks from
high-throughput data. The fundamental idea behind
these approaches is that models that faithfully capture
the relationship between biological elements have pre-
dictive capacity and can be used to gain insight about
system-wide properties such as steady-state behavior
or responses to perturbations or specific stimuli. The
main drawback of statistical approach is that the net-
work structure inferred depends on statistical models
and data. Nevertheless, the statistical approach to net-
work modeling has an inherent potential of rapid net-
work construction for organisms that are relatively
uncharacterized from high-throughput data.
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