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Abstract

In this paper, we present simple formulae for pre-
diction of the fluid flow and electric current through
each of the channels connecting reservoirs and junc-
tions in complex microfluidic networks that are com-
monly found in micro devices such as biochips. The
shape of the cross-section of the channels we are
concerned with is rectangular, and the series solu-
tions for the Stokes’ flow within the channel are re-
presented by formulae that are very simple but
accurate enough for the design of the channels. In
particular, we for the first time propose the solution
of the electroosmotic flow for the case where each
side of the four walls has different zeta potential;
this is also represented by a simple formula instead
of the series form. Our code was validated by com-
paring the numerical solutions with the data report-
ed in the literature and good agreement has been
found. 

Keywords: Microfluidic network, Pressure-driven flow,
Electroosmotic flow

Introduction

Usually a microfluidic system or lab-on-a-chip is
composed of a microfluidic network for the complex
process including pumping, mixing, reaction, separa-
tion and detection, etc. As the number of functions to
be performed in the system is increased, the config-
uration of the network becomes more complex, and
the precise control of fluid flow in each part of the
network in turn becomes more ambiguous and even
difficult. This means that we need efficient and
convenient design tools for predicting the hydrody-
namical and electrochemical properties of the fluid
flowing through each of the channels of the network. 

The primary design tool needed for the chip design-
er is the computer program that can calculate the flow
rate and the electric current through the channel; in-
formation on the pressure and the potential distri-
bution at an arbitrary section of the channel may also
be needed e.g. in order to predict the dispersion effect
of the sample. Qiao and Aluru1 proposed the so called
compact model for calculating the pressure-driven
and electroosmotic flows through microchannels of
circular cross-section. The complex fluidic network
was simplified by an electric circuit and the numeri-
cal results were in good agreement with the ones
given by the full equations. Ajdari2 proposed a linear
system of equations to be solved for the pressure and
the electric potential distribution in microchannels.
Xuan and Li3 presented the method of network calcu-
lation by using a linear system which can be applied
not only to the microchannel but also to the nano-
channel; hereinafter the word ‘nanochannel’ refers to
the case where the thickness of the electric double
layer (EDL) is comparable to the channel size where-
as ‘microchannel’ refers to the case of negligible thin
EDL. The configuration of the channel cross-section
they treated was a circle and the Debye-Hückel linear
analysis was employed in calculating the electroos-
motic flows. Berli4 also performed the network analy-
sis and proposed a formula that can be applied to the
microchannel as well as nanochannel for the cross-
section of circular and slit shapes. They also followed
the Debye-Hückel approximation in order to get the
analytic solution for the electroosmotic flows. Later
Berli5 proposed the formula for the microchannel of
the rectangular cross-section. 

The fundamental formula needed for predicting the
flow rate and the pressure and potential distributions
in both the microchannels and nanochannels can be
given analytically for the circular and slit cross-sec-
tions. However for the rectangular cross-section, we
need a series form as the formula predicting the pre-
ssure-driven flow. In addition, when each side of the
four walls surrounding the channel is made from dif-
ferent materials (for instance side/top walls from
PDMS and the bottom wall from glass) we must use
a series form as the formula predicting the electroo-
smotic flow. 

This paper presents the fundamental formula that
can predict the fluid flow rate, the electric current,
and the pressure and potential distributions inside the
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microchannels of rectangular cross-section. Instead
of using the series form we propose to use simple
formulae for the pressure-driven and electroosmotic
flows. Our method can be applied even to the case
where the side walls are made from different materi-
als. We also show that our code developed in this
study can be used not only for calculating the flow
rate and current with the pressures and potentials
given at reservoirs and electrodes but also for the in-
verse problem, i.e. calculating the required pressure
or potentials necessary to keep the given flow rate
and current. 

Results and Discussion

We developed a computer program that numeri-
cally constructs and solves the linear system of equa-
tions. In this section we present the numerical results
obtained for a few example cases. All the details of
the formulation and the numerical methods are given

in the section entitled “Materials and Methods” of
this paper. As the first example, we consider the pro-
blem shown in Figure 4, which has been studied by
Hu et al.6 by using CFD with full equations and later
by Berli5 with equivalent circuit modeling. All the
channels are composed of uniform cross-section with
a==100 [μm] and b==20 [μm]. All the channel walls are
also characterized by the uniform zeta potential with
ζ==-18.3 [mV]. Channel lengths are; l1==l4==14 [mm],
l2==l3==9 [mm] and l5==10 [mm]. The fluid used is HCl
with z==1, c0==25 [mM] and σ0==0.26 [S/m]. We also
assumed the following data; T==298 [K], ρ==1000 [kg/
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Figure 1. Geometry and coordinates for the analysis of the
fluid flow and electric current through a microchannel with
the cross-section of rectangular shape.
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Figure 2. Comparison between the exact value (symbols) of
Kp(R) and that given from the approximation (4) (line). 
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Figure 3. Comparison between the exact value (symbols) of
Ke(R) and that given from the approximation (11) (line).
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Figure 4. Typical example of a network composed of 5
channels and 6 junctions (including four set of reservoirs and
electrodes marked by open circles). 



m3], μ==0.001 [Pa.s] and ε==80ε0 where ε0 is the elec-
tric permittivity of the vacuum. This network has been
actually used by Hu et al.6 in immunoassay analysis.
The analysis cycle consists of 6 operations and each
operation has its own flow requirement; for instance,
during the primary dispensing the fluid carrying anti-
body in the junction 1 is required to flow toward the
junction 2 through the channels 1 and 2 while the fluids
in the other channels remain stationary, and during
the secondary incubating the fluid must flow from the
junction 4 to the junctions 1 and 2 while the fluid in
the channel 3 remain stationary, etc. In order to attain
uniform velocity profiles, all the reservoirs are main-
tained at the ambient pressure, i.e. pj==0 [Pa] for j==1,
2, 3, 4. Table 1 shows the six set-up of the electric
potentials applied at the four electrodes constituting
the boundary junctions in order to satisfy the flow
requirement in each opera-tion. The numerical results
calculated from the code are presented in Table 2 in
comparison with the corresponding data obtained by
Hu et al.6 by using the CFD with the full equations. It
can be seen that our data are in good agreement with

theirs for all operations. Except for the velocity data
with low values, the maximum error is within 1%. 

The second example treated in this study is shown
in Figure 5, called double T-shape. This network has
been used by Dodge et al.7 in immunoassay and stu-
died by Berli5 in the network calculation. Here, all
the reservoirs are set at the ambient pressure. The po-
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Table 1. Applied potentials ϕj in [V] at four electrode junc-
tions numbered j==1,2,3,4 during 6 operational steps of the
immunoassay with the network of Figure 4.

ϕ1 ϕ2 ϕ3 ϕ4

Dispensing (P) 250 0 95 100
Incubating (P) 300 0 47.5 50
Washing (P) 120 0 500 300
Dispensing (S) 350 0 265 500
Incubating (S) 300 0 132.5 250
Washing (S) 300 0 500 0 4
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Figure 5. Second example of a network composed of 5
channels and 6 junctions. Here flow rates through the chan-
nels 2 and 4 are required to be zero, and the potentials at the
two electrodes denoted by the junction numbers 2 and 4 are
to be treated as unknowns, instead. 
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Figure 6. Effect of the ratio of the zeta potentials, ζRC/ζ, on
the ratios of the applied potentials, ϕ4/ϕ3 and ϕ2/ϕ3, obtained
numerically from the developed code for the second example
of the network shown in Figure 5.

Table 2. Calculated average velocity un in [μm/s] through
each of the four channels numbered n==1,2,3,4 in comparison
with the corresponding data (data within brackets) obtained
by Hu et al.6 with CFD for the electrode potentials given in
Table 1. Here, the sign indicates the downward (positive) or
upward (negative) motion of the fluid viewed from Figure 4.

u1 u2 u3 u4

Dispensing (P) 141.9 141.3 3.2 2.6
(141) (140) (3) (2)

Incubating (P) 70.9 70.7 1.6 1.3
(70.5) (70) (1.5) (1)

Washing (P) -102.6 159.7 -273.0 -10.7
(-102) (159) (-271) (-10)

Dispensing (S) -86.9 135.1 -2.0 220
(-86) (133) (-2) (221)

Incubating (S) -43.4 67.6 -1.0 110
(-43) (66.5) (-1) (110.5)

Washing (S) -74.1 115.2 -398.5 -209.3
(-74) (114) (-396) (-208)



tentials at the junctions 1 and 3 are specified with ϕ1

==0 [V] and ϕ3==500 [V]. The potentials at the junc-
tions 2 and 4 are treated as unknown variables and
the requirement is that the flow rate through the chan-
nel 2 and 4 become zero. All the channel cross-sec-
tions take the same configuration with a==50 [μm] and
b==20 [μm]. The channel lengths are; l1==l2==l3==l4==
10 [mm] and l5==1 [mm]. The fluid used is KCl with z
==1, c0==25 [mM], σ0==0.37 [S/m] and T==293 [K]. The
zeta potential of each channel takes different value
owing to the surface treatment. The channels 1 and 3
are given with the same value denoted by ζ and the
other channels by ζRC. Berli5 investigated the effect
of the zeta potential ζRC on the potentials applied at
the reservoir junctions 2 and 4 while the value of ζ
was fixed at ζ==-60 [mV]. Figure 6 shows the nume-
rical results and they are in good agreement with the
corresponding ones presented by Berli5. Because of
different zeta potentials applied at each channel, the
pressure gradients are built up at the channels, which
in turn causes the velocity profile different from the
plug type so that the dispersion effect may be signi-
ficant. 

During the test run of our code for several practical
networks, it has been found that the current is almost
dominated by the potential difference and the effect
of the pressure difference is almost negligible. Be-
sides, the convective current caused by the motion of
ions within the EDL showing the non-equilibrium
distribution, is negligibly small compared with the
conductive current occurring in the bulk. 

After the pressure and potential at each junction
have been determined, we can estimate the total
velocity profile from 

u(y, z)=up(y, z)++ue(y, z)

where the pressure-driven-flow velocity up and the
electroosmotic-flow velocity ue are calculated from
Eqs. (1) and (6) presented in the section “Materials
and Methods”, respectively. From the velocity profile
we can analyze the dispersion effect as proposed by
Qiao and Aluru1. 

In order to generalize the code we must include not
only the dispersion analysis but also the quantifica-
tion of mixing and separation, etc. In a short future
we expect such modules can be developed appropria-
tely and added to the code. 

Conclusions

We in this paper presented the methodology of the
network calculation together with the formulae that
are simple but accurate enough for the design of mic-

rofluidic devices. The simple formula can also treat
the case where each side of the channel cross-section
carries different zeta potential. We have shown by
running the developed computer program for exam-
ple cases that the algorithms as well as the simple for-
mula indeed result in the data that are in good agree-
ment with those reported in the literature. 

Materials and Methods

In this section we address the formulation and the
numerical methods used in the simulation of the mic-
rofluidic network problems. Microfluidic networks
are composed of reservoirs, electrodes and channels.
The channels connect the reservoirs and electrodes.
They are also connected to each other at junctions. In
predicting the flow rates and electric currents inside
the channels we need fundamental formulae that can
compute the flow rate and current through a single
channel. In this paper we are interested in a straight
channel of rectangular cross-section as shown in
Figure 1. We assume that the fluid and current flows
remain at a steady state and fully-developed at low
Reynolds numbers. 

Pressure-driven Flow
The axial flow velocity u can be obtained from the

following series formula5.

4b2 dp  ∞ 1        cosh[βk(2y/a-1)/2R]
u==mmm·-mmm‚» mm {1-mmmmmmmmmmmmmmmmm}μ dx k==0 β3

k cosh[βk/(2R)]

sin(βkz/b) (1)

where μ is the fluid viscosity, R==b/a the aspect ratio
of the channel cross-section, dp/dx the pressure gradi-
ent along the channel axis and βk==(2k++1)π. The ave-
rage velocity umm can be obtained from integration of
Eq. (1) over the cross-section yielding

8b2 dp  ∞ 1        2R
umm==mmm·-mmm‚» mmmm {1-mmm tanh[βk/(2R)]} (2)

μ dx  k==0 β4
k βk

Instead of using this series form we in this paper
propose to use a simple formula

8b2 dp  Kp 2R
umm==mmm·-mmm‚mm {1-mmm tanh[π/(2R)]} (3)

μ dx   π4 π

where the correction factor Kp is close to 1. We have
found from a curve fitting that the empirical formula 

Kp(R)==0.2190exp(-3.4/R)++1.01468 (4)

provided the average flow velocity with maximum
error 0.7% over all the possible range of R. Figure 2
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shows the comparison between the exact value of
Kp(R) obtained from the full equation (2) and that
computed from the approximation (4). We can see
that the difference between the two data is almost
indistinguishable. 

Electroosmotic Flow
We consider the electroosmotic flow driven for the

moment only by the bottom wall of the channel with
the zeta potential ζ. In this paper we assume that the
Debye length

λD== (5)

is much smaller than the channel size; that is, we
confine ourselves to the microchannels. Here, we
take the fluid as the binary liquid with the valence z.
Further, ε is the electric permittivity of the fluid, kB

the Boltzmann constant, T the temperature, e the ele-
mentary charge and c0 the number concentration of
each ion in the bulk, i.e. the number density. 

Then the electroosmotic-flow velocity is given as

u==usU(y, z; a, b, R) (6)

where the dimensionless velocity U is defined as

∞ sinh[βk(b-z)/a]
U(y, z; a, b, R)==4» mmmmmmmmmmmmm sin(βky/a) (7)

k==0 βk sinh(βkR)

and the slip velocity us as

εζ    dϕ
us==mm·mmm‚ (8)

μ    dx

Equation (7) can be obtained by applying the techni-
que of separation of variable to the axial momentum
equation ∇2U==0 with the boundary conditions, U==1
at z==0 and U==0 at y==0, a and z==b. Here, dϕ/ dx is
the gradient of the external potential along the chan-
nel axis (i.e. the negative electric field). The average
velocity is given by 

8us ∞ 1
umm==mmm» mm tanh(βkR/2) (9)

R  k==0 β3
k

We also propose to use a simple formula instead of
this series form;

8us
umm==mmmKe tanh(πR/2) (10)

π3R 

where the correction factor Ke is given as

Ke(R)==0.1819exp(-3.86R)++1.0518 (11)

This formula is again given from a curve fitting. It

turned out that the maximum error is 0.1% over the
whole range of R, see Figure 3. 

The final velocity profile must encompass the con-
tributions from all the surrounding walls and can be
obtained by the algebraic sum as follows. 

4

u==»us,iUi (12)
i==1

where the subscripts i==1, 2, 3, 4, indicate the bottom,
top, left and right walls, respectively. Each of Ui can
be obtained from (7) simply by switching coordinates
and constants as follows; U1==U(y, z; a, b, R), U2==U
(y, b-z; a, b, R), U3==U(z, y; b, a, R-1), U4==U(z, a-y;
b, a, R-1). The slip velocity at the i-th wall of the chan-
nel, us,i, is obtained from (8) with the corresponding
zeta potential ζ==ζi there. The flow rate can also be
obtained by using the formula in a form similar to (12)
as follows.

4

umm==»Mius,i (13)
i==1

where

8π-3R-1Ke(R) tanh(πR/2)      for i==1, 2
Mi=={ (14)

8π-3RKe(R-1) tanh(πR-1/2)   for i==3, 4

Flow Rate and Electric Current
The flow rate passing through the channel is given

by Q==Aumm, where A==ab is the cross-sectional area of
the channel. When both the pressure difference Δp
and the potential difference Δϕ exist over the channel
length l, the flow rate is determined from the follow-
ing equation.

Q==L11Δp++L12Δϕ (15)

where 

8A2RKp 2R           π
L11==-mmmmmmm [1-mm tanh·mm‚]π4μl              π 2R

εA  4
L12==mmm»Miζiμl i==1

In order to determine the electric potential at each
junction or reservoir, we employ the Kirchhoff’s junct-
ion law by using the current flowing through each of
the channels connected to the junction or reservoir;
so we need the formula relating the potential dif-
ference to the current for a given channel. Neglecting
the diffusive effect along the x-direction, we can ob-
tain the total current density j(y, z) along a channel as
the sum of the convection effect ρeu(y, z) and the con-
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duction effect -σ(y, z)dϕ/dx, where ρe is the volume
charge density σ(y, z) and is the electric conductivity
of the fluid. For microchannels the thickness of EDL
is much smaller than the channel size and ρe is non-
zero only within the EDL. Therefore it is allowed to
assume that the convective current is confined to EDL.
Conversely, in considering the conduction current, we
can neglect the effect of EDL and assume that the
conductivity remains uniform over the cross-section,
i.e. σ==σ0==constant. Derivation of the formula for the
current requires some algebraic works and we here
show only the results. The total current I passing a
channel is given by

I==L21Δp++L22Δϕ (16)

where 

εA  4
L21==L12==mmm»Miζi (17a)

μl i==1

σ0A    8ε2ψ2
T 4

L22==-mmmm-mmmmmm»si sinh2(zζi ψ
-1
T /4) (17b)

l      z2μλDl i==1

Here ψT==kBT/e is the thermal potential and si indicates
the length of the i-th side of the rectangle, i.e., s1==s2

==a and s3==s4==b. Depending the specific network
problem, the conductivity σ0 may be directly given or
the diffusivity D may be instead given. For the latter
case, we can get the conductivity formula by employ-
ing the Einstein equation linking the mobility and the
diffusivity reading 

2z3e2Dc0σ0==mmmmmmmm
kBT

Linear System of Equations for the Junction
Pressure and Potential

Our first target in the network calculation is to
obtain the pressures and potentials at all the junc-
tions. A typical network is shown in Figure 4, where
5 channels are connected by 6 junctions. In order to
derive the relevant equations, we first apply the
conservation of the fluid mass and the electric charge
at each junction. Consider a generalized junction
where multiple channels are connected. By the term
‘generalized’ we mean that the reservoir or the elect-
rode (or both) is also considered as one of the junc-
tions; the only difference is that the reservoir and the
electrode can supply the fluid mass and the charge
without bound, respectively.

Suppose there are multiple channels connected to a
junction with a sequential number j; in Figure 4, the
junction j==5 has three channels numbered n==1, 2, 5.
The flow rate and the current through the channel
number n are given respectively by

Qn==L11,nΔpj,k++L12,nΔϕj,k, 
(18)

In ==L21,nΔpj,k++L22,nΔϕj,k

Here, Δpj,k and Δϕj,k denote the pressure and potential
differences between the present junction j and the
junction k at the other end of the channel n; Δpj,k==
pj-pk(j,n), Δϕj,k==ϕj-ϕk(j,n). The total amount of flow
rate and current coming into the junction are given by

Q==»Qn,     I==»In (19)
n∈Nj n∈Nj

where Nj stands for the subset of the channel’s serial
numbers connected to the junction j; in Figure 4,
Nj=={1,2,5} for the junction j==5. If there is no further
input of fluid and charge, then LHS of the above must
become zero following the conservation principle. If
there is separate input of the flow rate Qin and the
current Iin, LHS of the above equations must be re-
placed by -Qin and -Iin, respectively. On the other
hand the main variables to be obtained by applying
the equations (19) are the pressure pj and the potential
ϕj. Since pk and ϕk are also unknown, we need a li-
near system of equations coupling all the junction vari-
ables. As an example we consider Figure 4 and assu-
mes that at four boundary junctions j==1,2,3,4 the
pressures and potentials are given. Then we have four
unknown variables, p5, p6, ϕ5 and ϕ6 that are to be
determined by solving the following equations. 

» L11,n(p5-pk(5,n))++» L12,n(ϕ5-ϕk(5,n))==0
n==1,2,5                                       n==1,2,5

» L21,n(p5-pk(5,n))++» L22,n(ϕ5-ϕk(5,n))==0
n==1,2,5                                       n==1,2,5

» L11,n(p6-pk(6,n))++» L12,n(ϕ6-ϕk(6,n))==0
n==3,4,5                                       n==3,4,5

» L21,n(p6-pk(6,n))++» L22,n(ϕ6-ϕk(6,n))==0
n==3,4,5                                       n==3,4,5

We move the terms multiplied by the four sets of
known variables (pj,ϕj) (for j==1,2,3,4) to RHS and
solve the resultant system of equations to obtain the
four unknown variables. We used the Gauss elimina-
tion method with pivoting as the solver. 
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