` 학술지 열람 - 학술지(BCJ) : (사)한국바이오칩학회 (The Korean BioChip Society)
Go to contents

(사)한국바이오칩학회 The Korean BioChip Society





BT+IT+NT융합시대의 리더 : 한국바이오칩학회

학술지 열람

논문 정보 자세히 보기

Info. Vol.15 - No.1 (2021.03.20)
Title Floating Magnetic Membrane for Rapid Enrichment of Pathogenic Bacteria
Authors Suhyun Kim1, Jeil Lee2, Bonhan Koo2,3, Donghoon Kwon4, Sangmin Jeon4, Yong Shin2,3(shinyongno1@yonsei.ac.kr) and Jinmyoung Joo1(jjoo@unist.ac.kr)
Institutions 1Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
2Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
3Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
4Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
Abstract Efficient separation and enrichment of pathogenic bacteria from complex matrices are crucial for the detection and downstream biomedical investigations. Herein, we report a floating magnetic membrane comprised of superparamagnetic nanoparticles and cationic polymer chains for rapid capture and enrichment of pathogenic bacteria under continuous flow. Magnetic nanoparticles combined with polymeric chains have shown affordable features to capture, release, and concentrate the pathogens by applying an external magnetic field. We have verified the modulated porous characteristics of the floating magnetic membrane depending on the molecular weight of cationic polymer chains and demonstrated rapid enrichment of pathogenic bacteria from aqueous fluid in the capillary glass tube (> 50-fold). Structural flexibility of the magnetic membrane allows the liquid and smaller species to pass through but efficiently induces binding of the bacteria on the antibodyfunctionalized magnetic nanoparticles of the floating virtual web. The magnetic membrane enables size-selective filtration and target-specific trapping through ionic exchange and immunomagnetic isolation. This study implies that spatiotemporal application of the magnetic membrane for rapid enrichment of biological targets in a large volume of continuous flow using microfluidic devices and biochips.
Keyword Magnetic nanoparticle · Microfluidics · Biosensor · Pathogenic bacteria · Ionic exchange
PDF File
# 2010년도 발행분 부터는 Springer 의 BioChip Journal 페이지에서 전문을 열람하실 수 있습니다.
# 학회회원 로그인 후 [ Springer BioChip Journal 열람하기 ] 버튼을 클릭하시면 새창으로 열립니다.
→ 전체 목록 보기

(사)한국바이오칩학회 (The Korean BioChip Society)
총괄/후원/부스/저널/학술대회
전화 : 070-7767-9855
전자우편 : biochip@biochip.or.kr
등록/초록/학술대회/e-컨퍼런스/
회원정보/홈페이지
전화 : 070-7767-9867
전자우편 : biochip2@biochip.or.kr
주소 : (우)06130, 서울특별시 강남구 테헤란로7길 22 과학기술회관 1관 804호    대표자 : 박현규   고유번호 : 206-82-65403   팩스 : 02-921-9856
웹사이트 : https://www.biochips.or.kr Copyright © The Korean BioChip Society. All Rights Reserved.