` 학술지 열람 - 학술지(BCJ) : (사)한국바이오칩학회 (The Korean BioChip Society)
Go to contents

(사)한국바이오칩학회 The Korean BioChip Society





BT+IT+NT융합시대의 리더 : 한국바이오칩학회

학술지 열람

논문 정보 자세히 보기

Info. Vol.15 - No.2 (2021.06.20)
Title Systematically Studying Dissolution Process of 3D Printed Acrylonitrile Butadiene Styrene (ABS) Mold for Creation of Complex and Fully Transparent Polydimethylsiloxane (PDMS) Fluidic Devices
Authors Pin-Chuan Chen1,2, Ching Chan Chou1, Chung Hsuan Chiang1
Institutions 1Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
2High Speed 3D Printing Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
Abstract Our major objective in this study was to create complex, three-dimensional, and fully transparent polydimethylsiloxane(PDMS) fluidic device by revising the previously reported fabrication process and to systematically study the influence of each fabrication step to the final PDMS fluidic device. The current fabrication process adopted fused deposition modeling (FDM) 3D printers to create molds of acrylonitrile butadiene styrene (ABS) for use in PDMS casting, then solvent solution was used to dissolve the ABS mold embedded inside the PDMS device and a transparent PDMS device was created for experiments. However, it is quite challenging to ensure the complete removal of ABS molds inside the long, curly, and narrow channels. Ultrasonication was added into our fabrication process to improve the efficacy of dissolving ABS molds inside the channels and conclusions can be derived from these experiments: (1) ultrasonication-assisted dissolution is an effective approach to the complete removal of ABS molds embedded inside these long, curly, and narrow channels (for example, the mixer demonstrated herein had a diameter of 2 mm and length of 162 mm); (2) the application of solvent vapor polishing to 3D-printed molds is highly effective in reducing the surface roughness of the molds (8 ~ 10 μm before polishing to 038 ~ 0.5 μm after polishing) and important to preserve the transparency of the resulting PDMS devices; (3) ensuring the circulation of fresh solvent solution is critical to shorten the dissolution process.
Keyword 3D transparent PDMS fluidic device · Ultrasonication dissolution process · 3D printing
PDF File
# 2010년도 발행분 부터는 Springer 의 BioChip Journal 페이지에서 전문을 열람하실 수 있습니다.
# 학회회원 로그인 후 [ Springer BioChip Journal 열람하기 ] 버튼을 클릭하시면 새창으로 열립니다.
→ 전체 목록 보기

(사)한국바이오칩학회 (The Korean BioChip Society)
총괄/후원/부스/저널/학술대회
전화 : 070-7767-9855
전자우편 : biochip@biochip.or.kr
등록/초록/학술대회/e-컨퍼런스/
회원정보/홈페이지
전화 : 070-7767-9867
전자우편 : biochip2@biochip.or.kr
주소 : (우)06130, 서울특별시 강남구 테헤란로7길 22 과학기술회관 1관 804호    대표자 : 박현규   고유번호 : 206-82-65403   팩스 : 02-921-9856
웹사이트 : https://www.biochips.or.kr Copyright © The Korean BioChip Society. All Rights Reserved.