` 학술지 열람 - 학술지(BCJ) : (사)한국바이오칩학회 (The Korean BioChip Society)
Go to contents

(사)한국바이오칩학회 The Korean BioChip Society





BT+IT+NT융합시대의 리더 : 한국바이오칩학회

학술지 열람

논문 정보 자세히 보기

Info. Vol.16 - No.3 (2022.09.20)
Title High-Performance Graphene FET Integrated Front-End Amplifier Using Pseudo-resistor Technique for Neuro-prosthetic Diagnosis
Authors Jatoth Deepak Naik1, Pradeep Gorre2, Naga Ganesh Akuri2, Sandeep Kumar2, Ala’aDdin Al-Shidaifat1, & Hanjung Song1,2,*
*Hanjung Song hjsong@inje.ac.kr
Institutions 1Department of Nano Science and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Korea
2Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru, India
Abstract A complex analysis of spike monitoring in neuro-prosthetic diagnosis demands a high-speed sub-nanoscale transistors with an advanced device technologies. This work reports the high performance of Graphene field-effect transistor (GFET) based front-end amplifier (FEA) design for the neuro-prosthetic application. The 9 nm Graphene FET device is optimized by characterization of transconductance and drain current towards high sensitivity and small factor. The proposed GFET-based FEA with pseudo-resistor technique demonstrates very high-input impedance in Tera-ohms that nullify the input leakage current.
Here, gain-bandwidth product and noise optimization of GFET FEA enhances the overall gain with negligible noise. The proposed design operates at low voltage, further reduces the power consumption, and achieves less chip area in sub-nano size so it could be more suitable for implantable devices. The GFET-based FEA architecture achieves an action potential spike of 1.4 μV while the local field potentials spike of 1.8 mV. The proposed architecture is implemented in Advanced Design System using the design kit of the GFET process. Power consumption of 3.14 μW is observed with a supply voltage of 0.9 V. The simulated and experimental results of the proposed design achieve an input impedance of 2 TΩ with excellent noise performance over a wideband of 13.85 MHz. The proposed work demonstrates better neural activity sensing when compared to the state-of-the-artwork, which could be highly beneficial for future neuroscientists.
Keyword Front-end amplifier  · Neuro-prosthetic  · Spike monitoring  · Graphene field-effect transistor (GFET)  · Pseudoresistor
PDF File
# 2010년도 발행분 부터는 Springer 의 BioChip Journal 페이지에서 전문을 열람하실 수 있습니다.
# 학회회원 로그인 후 [ Springer BioChip Journal 열람하기 ] 버튼을 클릭하시면 새창으로 열립니다.
→ 전체 목록 보기

(사)한국바이오칩학회 (The Korean BioChip Society)
총괄/후원/부스/저널/학술대회
전화 : 070-7767-9855
전자우편 : biochip@biochip.or.kr
등록/초록/학술대회/e-컨퍼런스/
회원정보/홈페이지
전화 : 070-7767-9867
전자우편 : biochip2@biochip.or.kr
주소 : (우)06130, 서울특별시 강남구 테헤란로7길 22 과학기술회관 1관 804호    대표자 : 박현규   고유번호 : 206-82-65403   팩스 : 02-921-9856
웹사이트 : https://www.biochips.or.kr Copyright © The Korean BioChip Society. All Rights Reserved.